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Data

Tissue microarray of 99 samples consisting of triplicate, Tmm diameter cores
from 24 invasive breast tumor tissues.

Immunohistochemical staining revealed 4 cohorts:

IDC - invasive ductal carcinoma ILC - invasive lobular carcinoma
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Research Goals

Develop high throughput informatics tools for integrating and analyzing
cancer data obtained from a variety of imaging modalities
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Neural Networks - Biological Motivation

impulses carried L0 Wo

toward cell body axon from a neuron
branches

of axon

synapse
woxo

dendrites dendrite

cell body

f (Z wiz; + b)

w1
| axon of Y wimi+b >
nucleus terminals 7 output axon
activation
function

impulses carried W2 X2

away from cell body

http://cs231n.github.io//neural-networks-1/




Convolutional Neural Networks

CNNs are very similar to ordinary neural networks, but...

e Now, we make the explicit assumption that input are images

e Since fully connected layers don't scale well - take advantage of the fact that portions of
images are correlated

=0 0000|,

7

h

3

w|

Example filters learned by AlexNet

http://cs231n.github.io/convolutional-networks/




Patch Selection and Augmentation

rotated 360°

éii&!liiﬂ‘é%>lll=|=!ri




Results

Classification accuracy by configuration:

256 x 256 512 x 512
0 step size 3 6 6 18 36 9
patch overlap - - 64 - = .

CNN Acc 0.79 0.77 0.81 0.76 0.75 0.78

Classification accuracy:

increases with patch overlap
decreases with rotation step size
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10



Research Goals

Develop high throughput informatics tools for integrating and analyzing
cancer data obtained from a variety of imaging modalities
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Nearest Neighbor Visualization

Could form the basis for a powerful and interactive visualization tool for clinicians
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Conclusions

The main contributions of this work;

e classify cancer subtypes with respectable
accuracy
e |dentify immunofluorescent signatures

associated with a cancer subtype
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Future Work

a Identification of heterogeneous traits related to clinical outcome

Cell Protein expression  Assessment of protein, mRNA, and Cell type-specific
morphology and coexpression copy number alterations in single cells DNA alterations
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Hematoxylin Immuno- Immuno- mRNA DNA In situ MSP
and eosin histochemistry fluorescence FISH immuno-FISH merhy\a:(d gene

b Development of automatized tools for measuring signals

High-throughput imaging and morphometric quantifications

€ Optimization of mathematical models to obtain

numerical values for heterogeneity

Quantification of intratumor heterogeneity

d Apply heterogeneity measurements in clinical practice

Aid the design of the most optimal treatment

Spa

Lightning
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