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Motivation 
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Tumor Heterogeneity
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Data
Tissue microarray of 99 samples consisting of triplicate, 1mm diameter cores 
from 24 invasive breast tumor tissues.

Immunohistochemical staining revealed 4 cohorts:
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ER(+) IDC ER(+) ILC ER(-) IDC HER2(+) 
IDC

IDC - invasive ductal carcinoma ILC - invasive lobular carcinoma



Multiplexed Immunofluorescence Imaging
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Research Goals
Develop high throughput informatics tools for integrating and analyzing 
cancer data obtained from a variety of imaging modalities
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1. Cancer Classification

2.   IF Signatures



Neural Networks - Biological Motivation
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http://cs231n.github.io//neural-networks-1/



Convolutional Neural Networks
CNNs are very similar to ordinary neural networks, but...

● Now, we make the explicit assumption that input are images 

● Since fully connected  layers don’t scale well - take advantage of the fact that portions of 
images are correlated
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http://cs231n.github.io/convolutional-networks/

Example filters learned by AlexNet 



Patch Selection and Augmentation

9



Results
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Classification accuracy:

increases with  patch overlap 
decreases with rotation step size 

Classification accuracy by configuration:

Confusion matrix for best 
performing configuration



Research Goals
Develop high throughput informatics tools for integrating and analyzing 
cancer data obtained from a variety of imaging modalities
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1. Cancer Classification 2.   IF Signatures



Nearest Neighbor Visualization

Could form the basis for a powerful and interactive visualization tool for clinicians
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Conclusions 

The main contributions of this work:

● classify cancer subtypes with respectable 

accuracy

● Identify immunofluorescent signatures 

associated with a cancer subtype

13



Future Work 
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Questions?
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