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1. Abstract 4. Multiplexed Immunofluorescent Imaging 7. Nearest Neighbor Visualization

Intra-tumor heterogeneity, a prominent feature of many 8 .. 0 NS NN
. . . . . Background | = L
malignancies, may have diagnostic and prognostic value. i -

Thus, it is essential to develop and test spatial intra-tumor
heterogeneity metrics that correlate with various clinical
outcomes. In the present study, we propose a high
throughput pipeline that will form the basis for a set of
open-source informatics tools for integrating and analyzing
data obtained from a variety of imaging modalities. In
particular, we employ a deep learning approach to identify
discriminative cellular distributions or “signatures” in
multiplexed immunofluorescence images that can be used to
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Nearest neighbors using fc6 features for ER(+) IDC, ER (+) ILC, ER(-) IDC
and HER2(+) IDC (left to right). In each group, the tissue patch bounded by
the red box is the query image.
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characterize breast cancer subtypes. Lastly, our distributed
implementation currently targets Apache Spark, a powerful
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cluster computing framework, and should begin to mitigate

the difficulties associated with quantitative big imaging. _ P e —
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2. Intra-tumor Heterogeneity 5.1 Rotation-Based Patch Augmentation . Rotating each patch with
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» Utilize CaffeNet as powerful feature extractor

| | by retraining the last fully-connected layer on
Tumors represent a complex dynamic ecosystem where heterogeneity acts IF images

as the substrate for tumor evolution and as one of the main drivers of
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» Expand visualization tools for use by the clinician

disease progression and resistance to therapy.
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