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1. BACKGROUND AND SIGNIFICANCE 
 
1.1 Background:   
 

The use of drugs to achieve an altered mental state has existed for millions of years [10]. 
Although humans have used substances for such an extended period of time, science still lacks a 
complete understanding of the mechanisms behind drug abuse. The field of study associated with 
drug addiction has primarily focused on dopaminergic and serotonergic pathways in the brain, which 
are proved to be highly linked with reinforcement and reward systems [10, 11].  These studies have 
focused on finding specific genes of interest involved in the pathways targeted by drugs, but most 
gene sets produced by them have been broad, generalized gene sets. There has been little 
exploration into the theory that genes exist in discrete subsets highly correlated with abuse of an 
individual substance, rather than being part of a more generalized addiction gene structure [3]. To 
address this, the broad goal of our project is to determine if there exist sets of highly co-
expressed genes that are localized to certain brain structures and specific to particular drugs 
of abuse. We will do this by investigating co-expression profiles of substance use disorder (SUD) 
related genes and their location of expression in the brain.  

Because of the highly variable phenotypic expression of genotypes, along with the fact that 
one’s chance of addiction is also influenced by environmental interactions on gene expression 
(epigenetics) and heritability, there are too many variables to compile a list of genes guaranteed to 
increase susceptibility to addiction. However, by using gene sets from various studies attained 
through GeneWeaver and Brainarchitecutre [26, 27], two cross species gene set integration 
platforms, we are able to generate more targeted gene sets.  We compiled a set of general addiction 
genes (n=418) and subsets of more specialized genes linked with the pathways targeted by specific 
drugs of abuse, such as methamphetamines, opiates and cannabinoids. These gene sets (ranging 
from n=22 to n=3) are genes upregulated during use of the drug or are receptors and transports along 
the targeted pathway. These sets will be compared and analyzed with the data collected and curated 
by the Allen Brain Institute, which will allow us to delve deeply into the genetic variations implicated in 
increased susceptibility to addiction. 

The reason we will compare our data sets to data within the Allen Brain Institute is due to the 
fact that the atlas allows us to study gene expression over a standardized three-dimensional brain. 
This brain was produced by compiling data from thousands of in situ hybridization experiments into 
one, averaged, mouse brain. The brain was then spliced into voxels, further categorized into non-
overlapping regions and subregions with various levels of granularity [1]. This format gives us the 
ability to compare expression of addiction related genes with gene-expression throughout the entirety 
of the brain. Furthermore, we can see what regions (or subregions) show high co-expression with our 
substance-specific gene sets. This, in conjuncture with the variable annotations schemes enables for 
very fine granularity for defining physical regions within the brain.  
 
1.2 Significance 
 

In 1992, the estimated total economic cost of drug abuse in the United States by the National 
Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism was $97.7 billion 
[10]. More recently, the annual spending by the US government against the proliferation of drugs 
hovers around $51 billion [12].  This estimate, however, doesn’t include crime costs, direct healthcare 
costs, and loss of worker productivity, which add up to over $600 billion each year [13].  Together, 
current drug addiction and substance abuse spending in the United States is over $650 billion 
every year, which is an increase of 665% from 1992.   
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Substance abuse is not only fiscally costly, but takes a huge toll on the abuser’s 
health.  Addiction can increase susceptibility to cardiovascular disease, stroke, cancer, mental 
disorders, and a variety of other illnesses [14]. Addictions are particularly harmful due to the fact that 
they can negatively impact not only the user, but those around them as well. The physical and mental 
health of individuals coupled with the high economic toll of substance abuse is driving research on 
addiction.  By ascertaining whether or not addiction is particular to each independent drug of abuse 
we will be able to shift our current approaches to treatment of addiction.  If drug abuse is related to 
general addiction genes and reward mechanisms, we can broaden drugs to target all pathways 
evenly.  If addiction is specific to the drug of abuse, we will be able to tailor treatments to specific 
pathways, contributing to more effective and efficient recoveries.  In this manner, we can limit the 
economic and social losses caused by frequent drug use, and re-assimilate people suffering from 
addiction back into the community and the work force.   
 
2. SPECIFIC AIMS: 
 
 The current genetic model of addiction is 
still developing, however it is being developed from 
a set perspective – that addiction is a uniform 
concept independent of the abused substance.  
This view implies that addiction is composed of a 
set of genes that increase susceptibility to 
substance abuse, regardless of the substance.   
This is demonstrated in part a) of the schematic to 
the right. Our proposed hypothesis, that there 
exists sets of highly co-expressed genes that 
are localized to certain brain structures and 
specific to particular drugs of abuse, is 
demonstrated in part b) of the schematic – subsets 
of addiction genes that are independent of general 
addiction. 
 
2.1 Specific Aim 1: 
 

To determine whether there exists specific subsets of genetic modifications that 
correspond to different types of addiction, different drugs of abuse, or a combination of both. 
The first step to achieving this aim is to compile a list of genes associated with drug addiction as well 
as subsets of genes associated with addiction to individual drugs.  We will use these delineations as 
a first approximation of potential clique formations. Second, we will use the previously developed 
MatLab toolbox, Brain Gene Expression Analysis (BGEA), to carry out gene co-expression analysis. 
This will include Monte Carlo simulations and calculating cumulative distribution functions of co-
expression coefficients (as outlined in detail by Grange et al [4, 6]) to determine if our addiction genes 
hold a significant level of co-expression that is greater than expected by chance. 
 
2.2 Specific Aim 2: 
 

To determine whether or not there are discrete regions of the brain that have unique 
gene expression profiles highly co-expressed with mechanisms specific to one drug of abuse. 
To do this, we will sort our genes into small groups that we call cliques, based on fitting scores drawn 
from graph theory, calculated using the BGEA toolbox [4,6].  These scores tell us to what extent a 

Figure 1. Schematic of the hypothesis being 

tested. See text. 
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specific clique of genes aligns with regional expression in particular areas of the brain [4]. The main 
task is to use these, in conjunction with the results from the analyses used above in our first specific 
aim, to determine if the regions defined by our gene clusters overlap with traditional neuroanatomy 
and current understanding of where addiction physically resides in the brain. This will allow us to 
confirm known regions of the brain implicated in drug addiction, such as the striatum [2], and second, 
to encounter new regions that could influence susceptibility to drug abuse that have not yet been 
uncovered. 
 
2.3 Health relevance:  
 
 To the immediate user, recreational drugs have been shown to be highly detrimental to health, 
and the deficiencies they cause have been well documented and studied. These health complications 
depend on the drug of abuse, but can range from slight attention deficits to lung cancer, heart 
problems, seizures, and death. Tobacco use killed around 100 million people during the 1900’s and is 
projected to kill around 1 billion in this coming century if the current, abundant usage continues [14]. 
Alcohol damages parts of the cerebral cortex and hippocampus which are vital in decision-making 
and the consolidation of memory, respectively [14, 17, 18]. Methamphetamines are highly addictive, 
causing users to binge use the drug for extended periods of time, generally on the order of several 
days [14], which not only decreases their health, but also their productivity as a worker in society.  It is 
known that cocaine use during pregnancy impairs uterine growth of the fetus and causes deficits in 
the cognitive and information processing performance of the offspring [14]. All of these are just a few 
of the examples of the ways in which disorders cost our society; monetarily through hospital and 
rehab facility admissions, economically through loss of productivity, and societally by lessening future 
generations’ mental and cognitive preparedness.  
 Obtaining a full understanding of SUD is vital because it is prolific in our society.  According to 
the Substance Abuse and Mental Health Services Administration (SAMHSA), 24.6 million persons 
over the age of 12 were currently using illicit drugs. Furthermore, 1.4 percent of adolescents were 
diagnosed with join substance use disorder and major depressive episodes [19]. This indicates that 
addiction and substance abuse are likely linked strongly with mental illness. This hypothesis is also 
supported by the fact that “3.2 percent of adults had co-occurring AMI [any mental illness] and SUD 
[substance use disorder].”  Thus, in addition to the costs of direct substance abuse and addiction 
described in the preceding paragraph, the effects of these disorders are much farther reaching.  They 
influence mental health and stability as well, generating more losses to both the individual and the 
society in which they reside.  
 
3. PRELIMINARY DATA 
 
3.1 Construction of addiction-related genes datasets 
 
 To begin our study of drug-specific, addiction related genes, we needed to identify and compile 
a list of genes associated with drug addiction, with emphasis on genes implicated in particular 
substance use disorders. To accomplish this task, we took advantage of a searchable, web-based 
gene database generated as part of the brainarchitecture project initiated by the Cold Spring Harbor 
Laboratory [27]. Although we were able to identify over 800 addiction related genes, we restricted our 
research to a subset of the Allen Genes Expression Atlas (AGEA) to exclude genes with low 
transcription levels and retain genes that meet certain statistical criteria. Thus, only 418 mouse genes 
were available for study in the subset of AGEA, which we demarcated as our comprehensive 
addiction-related genes. 
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In our preliminary 
investigation, we wanted to extract 
meaningful substructure from this 
dataset pertaining to drug-
specific addictions through two 
converging lines of analysis: (1) 
studying co-expression patterns 
within this broad addiction gene 
dataset to identify gene cliques 
and (2) comparing these gene 
cliques to select subsets of 
genes identified by the literature 
as drug-specific. 

We employed 
GeneWeaver, another web-
based gene set database and 
integration platform to form the 
drug-specific subsets [26]. The 
advantage to using 
GeneWeaver is that it allowed 
us to combine cross-species 
data and evaluate the 
intersection of a collection of 
gene sets produced by numerous experiments. After collecting these gene subsets and isolating the 
genes available to study in AGEA, we had genes sets specific to marijuana, methamphetamines, 
morphine and cocaine (Table 1). 

 
3.2.a. Cumulative distribution functions (CDFs) of co-expression coefficients of addiction 
related genes 
 

 We began our investigation of co-
expression profiles by examining the 
cumulative distribution function of our 
comprehensive set of addiction related 
genes. First, it was necessary that we 
compute a gene-by-gene, atlas-wide co-
expression matrix, which for any two given 
genes is defined as the cosine similarity 
between the gene-expression profiles with 
values ranging from zero to one by 
construction [4]. This matrix is symmetric 
and ones populate the diagonal. Based on 
the indices of our addiction related genes in 
AGEA, we extracted a special co-
expression submatrix of our addiction 
related genes and investigated its 
properties.  

We now asked whether our addiction 
genes were more co-expressed than other 

Figure 2. Cumulative distribution functions for 1000 random draws 

from AGEA and our addiction gene subset. The CDF is defined as 

the fraction of co-expression coefficients smaller than a given 

number between 0 and 1. A two sample Kolmogorov-Smirnov test 

revealed that both CDFs were drawn from the same probability 

distribution 

Table 1. Drug Specific gene sets generated by Gene Weaver, a web-

based, cross-species gene set database and integration platform.  
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genes expected by chance. Here we employed Monte Carlo simulations, randomly drawing sets of 
genes of the same size as our addiction set from the atlas-wide co-expression matrix to generate a 
mean CDF. With this mean CDF, we made qualitative and quantitative comparisons to the addiction 
genes CDF. We found that the addiction genes CDF did not deviate significantly from the mean CDF. 
We speculated that this result could potentially stem from two reasons: (1) the fact that addiction is 
mostly involved in diffuse, generalized systems of the brain such as the dopaminergic system, or (2) 
that our addiction gene data set, because it contains approximately one sixth of genes in the AGEA, 
overshadowed underlying significant co-expression. To explore this second theory and to encounter 
any significant deviations, we needed more specific gene subsets that are comprised of very highly 
co-expressed genes that meet a high threshold requirement. To achieve this, we changed our 
approach and decided to run CDFs for our substance specific gene sets.  
 
3.2.b. CDF coefficients of subsets of specific drug related addiction genes reveal interesting 
co-expression properties. 
 

Through the same processes outlined in 
3.2.a above, we again calculated the CDF 
coefficients for addiction related genes; 
however, we restricted our genes of interest to 
a subset of our addiction related genes 
specifically associated with methamphetamine 
addiction. For highly co-expressed genes, we 
would expect growth of CDF to aggregate at 
higher values of the argument. Indeed, we 
began to observe this behavior with 
methamphetamine genes. Comparing the 
distribution of co-expression coefficients of 
methamphetamine genes with the other genes 
of the AGEA revealed that the largest deviation 
between these distributions was 26.7 % at a 
threshold of co-expression of 0.64 (Fig. 3). This 
deviation indicates that, with refinement of the 
gene set, our methamphetamine genes could be pulled from a different distribution than our general 
addiction gene set, hinting toward a possibility for specialization of addiction genes to a particular 
substance of abuse. 

 
3.3 Connected components/gene clique 
statistics 
 Next, we took a systematic approach in 
identifying interesting statistical properties 
of our addiction genes dataset by studying 
the weighted gene network graph 
underlying its co-expression matrix. In this 

Figure 3. Cumulative distribution functions for 1000 random 

draws from ABA gene set and our specific methamphetamine 

gene subset. The black arrow indicates the maximal 

difference (26.7%) between the two CDFs.  

Figure 4. Average and maximum sizes of 

connected components as measured at different 

co-expression thresholds are shown for the 

addiction gene network (Red) and 1000 randomly 

generated gene networks containing 418 genes 

(Blue). 
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graph theory formalism, each node represents an addiction gene and the length of an edge 
connecting any two genes signifies their co-expression. We then applied a thresholding procedure to 
isolate connected components, which are subsets of genes whose pairwise co-expression exceeded 
a given criteria [5, 6]. By incrementally increasing our co-expression threshold and computing the 
sizes of the gene cliques, we studied certain statistics of our addiction gene dataset, such as average 
and maximum size of the connected components. Again, for comparison, we relied on Monte Carlo 
simulations to generate random co-expression gene networks of the same size.  
 

Evaluation of addiction gene connectivity across a range of co-expression thresholds revealed 
that the maximum size of connected components was consistently larger than the mean maximum 
size of components across 100 draws (Fig. 4).  This would suggest that there are subsets of highly 
co-expressed genes (> 0.5) in our addiction gene set that contain more genes than expected by 
chance, indicating the possibility for specification of gene cliques amongst the larger, addictions gene 
set. These specifications could either be pathway specific or drug specific, and will require further 
biological and computational analysis to discriminate between the two.  
 
3.4 Neuroanatomical properties of gene cliques 

 
Lastly, as part of our preliminary investigation, we aimed to isolate specific genes cliques 

exhibiting the highest degree of co-expression and study their locations within the brain. Using a 
procedure similar to the one described above, we isolated and examined gene cliques characterized 
by addiction-related genes connected with co-
expression values above 0.5. We identified a 
total of 23 overlapping gene cliques containing, 
on average, 199.52 genes.  

Our analysis revealed that the top ranked gene clique maintained a co-expression threshold of 
0.92 and contained the addiction related genes: Rgs9, Drd1a, Pde1b, Drd2 and Adora2a, whose 
functions are described in table 2. 
Neuroanatomical 
investigation of these 
genes across 12 brain 
areas delineated by the 
Allen Reference Atlas’ ‘big 
12’ annotation scheme 
indicated significant 
overexpression of this 

Table 2. Gene functions of top-ranked gene clique from the addiction gene 

data set 

Figure 5. Identity and properties of top ranked gene clique. (A) Graph of co-expression connectivity. (B) Cumulative distribution 

functions for 1000 random draws and our gene clique. A two sample Kolmogorov-Smirnov test revealed that the CDFs were drawn 
from different probability distributions (p = 1.0295x10-10). 

 

A B 
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gene clique in the striatum, and to a lesser 
extent the pallidum (Fig. 6). These initial 
findings are consistent 
with previous research, which has 
implicated these genes in key components 
of the reward-signaling pathways [10, 11]. 
This indicates that all addiction genes and 
pathways do in fact converge at the striatum 
and pallidum. This calls for further research 
to uncover if there are discrete sub regions 
in these brain structures that house unique 
expression profiles highly correlated to the 
mechanisms of individual drugs of abuse.  
We will use PCA and clustering analyses 
based on the co-expression profiles of our 
subsets of addiction specific gets to 
determine these regions.  

 
 
4. FUTURE DIRECTIONS 
 

Addiction has been rooted in human societies for millennia, ranging from use of mild drugs to 
intensely mind-altering, hallucinogenic substances. The current foundations of addiction-based 
research are focused on profuse pathways in the brain such as the dopaminergic and serotonergic 
systems. Although this may explain segments of general addiction, it amalgamates addiction to each 
drug despite the fact that they affect the brain in fundamentally different ways. Methamphetamine and 
cocaine work by similar mechanisms; binding to dopamine transporters, blocking reuptake channels, 
and limiting degradation or monoamines, which all directly lead to increased dopamine levels 
[20].  Cannabis, however, does not target the dopaminergic system at all, but rather the specific 
cannabinoid receptors [21]. Similar to cannabis, opium has not been shown to target or influence the 
dopaminergic pathway in any way, but has its own, unique neurological and synaptic effects [22, 
23].  These dissimilar physiological interactions indicate that general addiction cannot be explained 
solely by researching dopamine pathways and reward systems, because it can be grounded in a wide 
array of differing receptors and signaling projections - addiction lies in more complicated pathways 
than general reinforcement and reward. Once we reach the conclusion of our specific Aims 
(described above in section 2), we will be able to gain a more comprehensive insight into pathways of 
addiction and their genomic and neuroanatomical characteristics and assign segments of them to 
individual substances of abuse.  This will allow for a revolutionary change of perspective on how 
drugs of abuse interact within our brain, and help future researchers tailor studies to determine ways 
to mitigate addiction, aid recovery using gene therapy, and develop more effective rehabilitation 
programs.  

After achieving our specific aims through computational analysis, further research will be 
focused on confirming the conclusions we obtained in animal models. One way in which we plan to 
do this is using DNA microarray analysis for both control and addicted mouse phenotypes. Within the 
addicted mouse phenotype, there will be subgroups addicted to only one particular drug of abuse, 
and an extra, general addiction control group as well, addicted to multiple drugs of abuse. This will 

Figure 6. Expression and neuroanatomical properties of top 

ranked gene clique (co-expression threshold of 0.92). (A) 

Fitting score of gene clique is highest in striatal and pallidal 

regions. (B) Maximal-intensity projections of gene cliques 
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allow us to determine whether or not the differing gene expression we predict to see in specific 
regions in mice addicted to different drugs of abuse is in fact expressed in vivo. If we find alternate 
gene expressions or new candidate genes, we will use this data to tailor our gene sets for re-analysis.  

Substance use disorder affects millions of individuals and their families stemming from all 
walks of life and is profoundly damaging to all layers of society. Our research is vital to fining a more 
efficient and effective way to help these individuals recover and reintegrate into society. Gaining the 
ability to understand the general model behind addiction will give us the basis needed to help those 
struggling with SUD. Furthermore, once the mechanisms behind addiction are established, novel 
research can begin on new gene therapies, more specific diagnoses, and rehabilitation programs that 
target root causes rather than symptoms.  Moreover, current determinations of susceptibility are 
loosely based on heritability and familial medical history.  Knowing the specific genotypes that 
increase susceptibility to addiction (or even susceptibility to specific drugs) will give us the ability to 
more concretely ascertain personal risk. In these ways, our research will lead to savings of hundreds 
of billions of dollars yearly in the form of decreased medical costs, increased worker productivity, 
increased happiness, and increased health of the general population.  
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