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Abstract

Training supervised image synthesis models requires a
critic to compare two images: the ground truth to the re-
sult. Yet, this basic functionality remains an open prob-
lem. A popular line of approaches uses the L1 (mean ab-
solute error) loss, either in the pixel or the feature space of
pretrained deep networks. However, we observe that these
losses tend to produce overly blurry and grey images, and
other techniques such as GANs need to be employed to fight
these artifacts. In this work, we introduce an information
theory based approach to measuring similarity between two
images. We argue that a good reconstruction should have
high mutual information with the ground truth. This view
enables learning a lightweight critic to “calibrate” a fea-
ture space in a contrastive manner, such that reconstruc-
tions of corresponding spatial patches are brought together,
while other patches are repulsed. We show that our formu-
lation immediately boosts the perceptual realism of output
images when used as a drop-in replacement for the L1 loss,
with or without an additional GAN loss.

1. Introduction
A fundamental requirement for image prediction tasks is

an effective loss function, to judge whether the synthesized
results are “close” to the ground truth. Straightforward mea-
sures – such as the Hamming distance or Euclidean L2 dis-
tance – do not work well with high-dimensional and struc-
tured signals, such as images.

A predominant approach addressing the high-
dimensionality of images is to take advantage of the
emergent perceptual similarity found in deep network
activations, commonly known as the “perceptual loss” or
feature matching loss [9, 40, 11, 19]. As seen in Figure 1
(bottom-left), this loss is obtained by computing the L1
distance between the internal activations of a pretrained
network to judge the similarity of two images. Even though
the network is pretrained on a seemingly unrelated task
(ImageNet [7] classification), the corresponding feature
space has been shown to be “unreasonably” effective in
matching human perception [48] even compared to a rich
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Figure 1. Patchwise contrastive perceptual loss. Existing losses
for comparing synthesized to ground truth patches use a fixed dis-
tance metric such as L1, either in the pixel space [17] or some
feature space [3, 43, 28]. Our method aims to replace the L1 or
the L2 regression loss with a loss based on mutual information.
Namely, our method learns to group the predicted patch and the
ground truth together, distinct from other patches. Our method
can be used in either the pixel space or the feature space to im-
prove visual realism.

line of hand-engineered similarity metrics [44, 46, 21].
However, despite the success of deep features used for

perceptual metrics and losses [43, 28, 1, 33] in supervised
image synthesis tasks, the original question of how to mea-
sure similarity between images has not been fully resolved.
In other words, the representations of the signals have been
transformed, but an L1 or L2 loss is ultimately still used to
judge similarity.

We observe that using the L1 distance metric for image
synthesis tasks often results in undesirable visuals that are
too smooth or desaturated, even when used in deep feature
space (Figure 1 bottom-left). We hypothesize that this is
because the L1 loss estimates the median of the multi-modal



distribution of the ground truth images. For example, the
bed in Figure 1 could be in various styles, and L1 finds the
median of all, which turns out to be flat and desaturated.

In this work, we view structural similarity from the per-
spective of mutual information. We posit that a good syn-
thesis is one that is easily associated to the ground truth in-
stance, even if they do not match pixel-by-pixel or feature-
by-feature. While directly estimating mutual information
is intractable, recent techniques in unsupervised represen-
tation learning [15, 4, 26] can be adapted for this purpose.
Namely, we use contrastive learning, which learns an em-
bedding to associate corresponding signals, in contrast to
other samples in the dataset. In our case, corresponding
signals are patches at the same spatial location in ground
truth and synthesized images, and other samples are patches
at different spatial locations in the dataset. Furthermore,
we find that defining the contrastive loss bidirectionally –
ground truth as the target in one direction, and the synthe-
sized as the target in the other – improves performance.

We investigate whether this contrastive loss formulation
serves as a suitable “drop-in” replacement for the standard
L1 loss when applied directly on both patches of raw pixels
and features extracted by common CNN backbones (Fig-
ure 1 right). There are several reasons why a contrastive
formulation provides an attractive alternative to L1 loss.
In particular, since contrastive learning aims to maximize
mutual information, it may potentially capture more de-
sired structure compared to L1. Moreover, the most promi-
nent approaches to contrastive loss lend themselves to be-
ing made adaptable to particular data domains, allowing for
“calibration” on top of a pretrained feature space via a critic
function. That is, a small 1-2 layer network is trained on
top to select for features, with the practical purpose of em-
phasizing those that are important for the task, and the the-
oretical purpose of serving as a better estimator for mutual
information [26].

We note a few key differences between our method
and GAN discriminators [12], which also learn a critic.
Whereas discriminators are trained adversarially, ours is
trained in a cooperative fashion, with both generator and
critic aiming to maximize mutual information. Ultimately,
the methods can be considered complementary. The goal of
our method is assessing the similarity between two images,
while GANs evaluate the realism of a single image. We
show that our contrastive feature loss can be used in con-
junction with a GAN loss, performing competitively against
SPADE [28], which uses a discriminator and the standard
perceptual loss.

We test our method across several image translation
tasks, purposely choosing tasks with output domains of
varying appearances and levels of photorealism: synthesiz-
ing photorealistic (Cityscapes [6] and ADE20K [49]) and
synthetic scenes (GTA [31]) from labels, predicting depth

maps from indoor images [34]. Our experimental results
show that across these image translation tasks, our con-
trastive loss formulation serves as a strong replacement for
the L1 loss as a distance metric, especially when applied to
the embedding space of trained deep networks.

2. Related Work
Our work is related to prior work on image similarity,

image synthesis, and contrastive feature learning.
Image similarity. Similarity metrics aim to measure how
“close” two images are. The simplest method is taking a
point-wise difference, using Euclidean `2, Manhattan `1,
or PSNR. Such methods do not have the capacity to con-
sider joint statistics. As such, methods developed in the im-
age processing community, such as SSIM [44], FSIM [46],
and HDR-VDP-2 [21] build models on top of patches, tak-
ing into consideration the human visual system. These
methods are effective in situations where structural am-
biguity is not a factor, and factors such as photometric
changes dominate. However, in many image translation
problems, such as translating labels into photorealistic im-
ages, synthesizing structure is the predominant factor. Re-
cently, the computer vision community has found that tak-
ing distances in the internal embedding space of a deep net-
work, referred to as a “perceptual loss” or feature matching
loss [19, 9, 11, 40], works remarkably well for image syn-
thesis [3]. Improvements include adding transformations to
allow for more spatial flexibility [32, 22], calibrating the
embeddings using human perceptual judgments [48], or ar-
chitectural changes [8, 13, 47]. Nonetheless, the backbone
remains a network that was trained for a completely differ-
ent task and data distribution, typically ImageNet classifica-
tion [7]. In our work, we investigate whether it is possible
to move beyond a frozen backbone, and adapt the feature
matching loss to the data and task distribution at hand.

An aspect of image synthesis algorithms is also how real
the image looks, in isolation. A natural method of en-
forcing realism is with a learned discriminator, or GAN
loss [12]. Unlike similarity metrics, which compare two
images, a discriminator looks at one image in isolation, in a
“no-reference” fashion, and evaluates it. In image synthesis,
similarity and realism are both factors that should be be ac-
counted for, and are sometimes at odds [2]. Thus, discrim-
inators and similarity metrics are often combined in image
translation systems in an additive manner [17, 50, 43, 28].
Recent works have also explored the coupling between the
two ideas, such as re-using the discriminator as a perceptual
loss [43, 41, 28], as a learned texture descriptor [29], com-
bining their architectures together [38], or a training sched-
ule that anneals from one to the other [37]. We show that
our method is complementary to GANs, and can be used
effectively in conjunction with a learned discriminator.
Contrastive feature learning. Contrastive feature learning



has primarily looked at learning strong feature representa-
tions without supervision for downstream visual recogni-
tion tasks [4, 15, 24, 26, 42, 45]. These approaches opti-
mize a loss that aims to map a query feature to a positive
target, which is obtained via data augmentation [4, 15, 24]
or leveraging a cross-modal signal [23, 25, 39], and con-
trast against a set of negative targets. Then, a given learned
feature representation can be applied to downstream recog-
nition tasks with minimal supervision. Our approach is in-
spired by these efforts, but our goal is different – we seek
to leverage contrastive feature learning for image predic-
tion. Our work is related to CUT [27], as both use a con-
trastive loss. However, while CUT asks the output to corre-
spond to the input, we ask the network to synthesize details
close to the ground truth image. Furthermore, we find that
a direct implementation of CUT in the paired data domain
suffers from bad local minima due to difficult optimization
and show that our proposed bidirectional formulation ef-
fectively mitigates this problem. Furthermore, since our
feature encoder does not share weights with the generator
(as it does in CUT), we are able to leverage pretrained fea-
ture encoders to produce further downstream performance
gains. Lastly, while the CUT system would not function
without a discriminator, we show our method can operate
in both settings, with and without a discriminator.

3. Methods
We consider problems where a generator G learns a map-

ping from input X 2 RH⇥W⇥CX to Y 2 RH⇥W⇥CY . For
example, for synthesizing photo from a semantic layout, the
input is a label map with resolution H⇥W and CX classes,
and the output is an RGB image (CY = 3). The generator
can be any function approximator, for example a deep con-
volutional neural network. Our goal is to measure similar-
ity between a ground truth signal Y and its reconstruction
Ŷ = G(X). In this section, we motivate and introduce our
bidirectional PatchNCE loss for comparing the similarity of
two signals. Moreover, we describe and compare with ex-
isting traditional strategies for measuring signal similarity.

3.1. Mutual information maximization
Often, due to the inherent ambiguity of the task, for a

given input signal X , there is not just a single ground truth
signal but a set of perceptually plausible output signals Y .
For example, given the task of generating an image given
an input segmentation mask, a “car” mask may correspond
to any number of satisfactory distinct instances of the same
category. As the desired output is often ill-defined from the
input signal alone, we seek to define a loss function compar-
ing a generated result Ŷ with a ground truth signal Y 2 Y
that allows for such ambiguity in the signal.

An example of a poor loss function is per-pixel regres-
sion, such as Euclidean `2 loss. Using such a loss will aver-
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Figure 2. Bidirectional patchwise contrastive perceptual loss.
Our approach compares spatial patches in a generated signal
to patches in a corresponding ground truth. For the depicted
label!image generation task, previous work uses L1 or L2 loss
on a feature representation (F can be a frozen feature extractor
or identity function to represent raw pixels). Based on mutual
information, our loss encourages the encoding of corresponding
patches in the generated and ground truth signals to be close (blue
patches) and non-corresponding patches (yellow) to be far.

age over the outcomes Y , producing a blurry result. This is
undesirable, as there is heavy loss of information. A blurry
result cannot be associated with the ground truth image, rel-
ative to other images. We hypothesize that a property of a
good reconstruction is high mutual information I with the
ground truth,

I
⇣
Ŷ ;Y

⌘
=
X

Y 2Y
P (Ŷ , Y ) log

 
P (Ŷ , Y )

P (Ŷ )P (Y )

!
, (1)

where P denotes probability distributions over random vari-
ables. Note that if the set of plausible signals Y is a single
instance, and reconstruction Ŷ perfectly matches this, then
the mutual information is infinite.

In many cases, we are given a dataset D = {(X,Y )} of
input and output ground truth pairs, which contains a single
observation of the plausible results. We seek a generator
G

⇤ that maximizes the mutual information of reconstruc-
tions and ground truth images, within the dataset, using the
following objective,

G
⇤ = argmax

G

E(X,Y )2D I(G(X);Y )) (2)

Computing the mutual information directly is intractable,
as it requires enumerating all possible outcomes and calcu-
lating the joint probability. We use recent advances in the
unsupervised learning literature, described below [15].

3.2. Bidirectional patchwise contrastive loss
We use a noise contrastive estimation framework [14]

as a means to maximizing mutual information between re-
construction and ground truth. The idea is that if a recon-
struction looks “similar” to the ground truth, the two should



be able to be embedded closely, relative to other images in
the dataset. Futhermore, we note that for an image to be re-
constructed well, each patch within the image should look
similar to the corresponding patch in the ground truth. Thus,
we can operate on a patchwise level, which enables denser
supervision for generator G.

We realize this intuition with a patchwise, contrastive
loss. Let ŷp, yp 2 RHpatch⇥Wpatch⇥CY be patches from the two
signals, in the same spatial location. Let v = F (ŷp), v+ =
F (yp) 2 RD be the D-dimensional embedding vectors of
spatially-corresponding generated and ground truth patches,
and v

� 2 RN⇥D be the embedding on the N other patches
(“negatives”) from the dataset. In this work we investigate
two classes of encoder F : (1) a simple linear projection of
a patch of pixels, and (2) a pretrained frozen deep network.
The loss is defined as an (N+1)-way classification problem,
with logits proportional to the similarity between embedded
patches,

`contrastive(v, v
+
, v

�) =

� log
exp (s(v, v+)/⌧)

exp (s(v, v+)/⌧) +
P

N

n=1 exp (s(v, v
�
n )/⌧)

,
(3)

where s(v1, v2) = v
T
1v2 returns the similarity between two

encoded patch signals as a dot product, and ⌧ is a parameter
to control temperature. This objective realizes our intuition.
If a patch is exactly reconstructed, then the embeddings
will have perfect similarity and the numerator will be max-
imized. If the patch is approximately reconstructed, it ob-
tains a high score if it can be easily associated to the ground
truth, relative to the non-matching “negative” patches.
Multiscale/Multilayer implementation. In the case where
F is a simple linear layer, patches of pixels are cropped at
multiple scales and passed through the layer. In contrast,
when using a deep network as our encoder, we do not liter-
ally crop out patches and encode. Rather, for computational
efficiency, we pass the full images Ŷ and Y into a network,
producing a stack of features. The feature activation at a
given spatial location and layer corresponds to a feature rep-
resentation of a patch in the input image. We illustrate this
setup in Figure 2. The size of the patch depends on the re-
ceptive field, depending on the architecture, and the layer
of the network. Thus, by taking activations at multiple lay-
ers of the network, we are able to compute the patchwise
contrastive loss at different spatial scales.

More concretely, images Ŷ , Y are extracted into sets of
L feature tensors {V̂l, Vl}Ll=1, where L is a pre-specified
number of layers. Each feature tensor is the output of the
l
th layer of encoder F , and a small projection head (e.g. a

linear layer or two-layer MLP) H . There is a slight abuse of
notation; the composition of H and F corresponds to F in
the previous subsection. Adding a small MLP was shown
by Chen et al. [4] to improve performance, so we found

this practice compatible with our framework. The shape of
tensor Vl 2 RSl⇥Dl is determined by the architecture of the
network, where Sl is the number of spatial locations of the
tensor. We index into the tensor with notation v

s

l
2 RDl ,

which is the Dl-dimensional feature vector at the sth spatial
location. We denote v̄

s

l
2 R(Sl�1)⇥Dl as the collection of

feature vectors at all other spatial locations.
Our loss on a pair of images is written as follows.

Lcontrastive(Ŷ , Y ) =
LX

l=1

SlX

s=1

`contrastive(v̂
s

l
, v

s

l
, v̄

s

l
) (4)

Bidirectional PatchNCE Loss. Drawing inspiration upon
classic work in image similarity [35], we investigate a sym-
metric “bidirectional” variant of the PatchNCE loss. We
pursue this with the intuition that not only should gener-
ated patches contrast with non-corresponding in training
patches, the corresponding training patch should similarly
contrast with non-corresponding generated patches. We
find that this leads to more stable training behavior, faster
convergence, and avoids degenerate solutions. We find this
to consistently hold true across different settings. Here, a
second contrastive term is added with the roles of the gen-
erated and ground truth patches reversed, as shown below:

Lcontrastive(Ŷ , Y ) = (5)

1

2

LX

l=1

SlX

s=1

`contrastive(v̂
s

l
, v

s

l
,sg(v̄s

l
)) + `contrastive(v

s

l
, v̂

s

l
,sg(ˆ̄vs

l
))

where sg function indicates a stop gradient operation (i.e.,
gradients are prevented from flowing through the nega-
tives). In the representation learning context, SiamSiam [5]
uses this technique to help prevent degenerate solutions. All
experiments take advantage of this bidirectional variant, un-
less noted otherwise.
Final contrastive objective. Given a dataset D =
{(X,Y )} of input and output ground truth pairs, we obtain
the generator G⇤ with the following objective,

G
⇤ = argmin

G

min
H

E(X,Y )2D Lcontrastive(G(X), Y ). (6)

As encoder H and generator G are neural networks, then the
entire system is differentiable and can be optimized jointly
using stochastic gradient descent.

3.3. Classic feature matching loss
Our loss has similarities with the classic feature match-

ing loss, or “perceptual loss”. The loss also passes image
Ŷ , Y through a pretrained network, which we designate as
F , to produce a stack of features V̂ , V . The perceptual loss
uses the `2 function to compare feature activations,

Lclassic(Ŷ , Y ) =
LX

l=1

SlX

s=1

`2(v̂
s

l
, v

s

l
). (7)
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Figure 3. We compare our results against typical regression losses used in supervised images synthesis tasks, such as L1 in pixel space [18]
and the feature space of the pretrained VGG network [3, 41, 28], on the Cityscapes[6], GTA[30], and ADE20K[49] dataset. Because the
L1 loss encourages regressing toward the median of all possible targets, they end up producing overly blurred or desaturated results. In
contrast, our PatchNCE loss, used in either the pixel or feature space, significantly boosts sharpness and colorfulness. Note that other
techniques such as progressive growing or GAN are not used in this experiment.



The loss is used to optimize a generator, in the following,

G
⇤ = argmin

G

E(X,Y )2D Lclassic(G(X), Y ). (8)

Comparing the optimization above with our method in
Equation 6, we note two differences. Firstly, rather than
only bringing corresponding patches together, ours pushes
them apart from non-corresponding patches at the same
time. Secondly, we have a shallow, learnable network H

on top of the primary feature extractor F , that can select for
the more important features for a given task.

3.4. GAN loss
We note that our method provides a lightweight mecha-

nism for calibrating to data, reminiscent of a GAN discrim-
inator. A key difference is that our method judges the sim-
ilarity between reconstruction and ground truth, whereas
a GAN loss judges the “realism” of just the reconstruc-
tion conditional on the input. It does so by learning a dis-
criminator D that judges whether an input output pair of
(X,G(X)) looks like it belongs to a dataset of input-output
pairs (X,Y ) 2 D.

LcGAN(X, Ŷ , Y ) = logD(X,Y )+log(1�D(X, Ŷ )) (9)

The generator aims to “fool” the discriminator. The so-
lution to the generator is found via min-max optimization.
In our experiments, we show that our method can be used
both by itself, or in conjunction with a discriminator,

G
⇤ = argmin

G

min
F,H

max
D

E(X,Y )2D
⇥
Lcontrastive(G(X), Y )

+ LcGAN(X,G(X), Y )
⇤
.

(10)4. Experiments
We evaluate our method on several paired image-to-

image translation datasets, for synthesizing both photore-
alistic and non-photorealistic images, and compare against
several baselines, followed by model ablations.
Network architecture and training details. As our main
interest is investigating the patch-based contrastive loss, we
keep the same training procedure and architecture estab-
lished by Pix2PixHD [43] and SPADE [28], except the
loss term. In more detail, for our generator network,
we use the ResNet-based SPADE generator, which pairs
well with the multiscale PatchGAN discriminator network
(when present). We investigate several different backbone
architectures for the feature extraction network in our con-
trastive loss (see supp. for complete list), focusing specif-
ically on the VGG19 [36] network standard “perceptual”
loss. Features extracted by these networks are then reduced
to low-dimensional embeddings via a simple linear layer
projection head and normalized by their L2 norms.
Baselines. Our main goal is to compare the effect of the
data-driven contrastive loss function as an improved drop
in replacement for the ubiquitous L1/L2 loss. Therefore,

we compare our approach against simple L1 pixel distance
loss, L1 distance of VGG feature responses [3], in combi-
nation with the GAN loss [28], while we use the same net-
work architecture for a fair comparison. Therefore, we do
not directly compare our method against prior work [3, 43]
as they used different architectures. For SPADE, we use
publicly available code.

4.1. Paired Image-to-Image Translation
Datasets. We evaluate our method on several datasets with
varying amounts of photorealism.
Cityscapes [6] contains street photographs paired with their
corresponding semantic label maps for 2,975 training and
500 validation images. Models learn to translate semantic
label maps containing up to a total of 19 unique semantic
categories to 512⇥256 resolution output images.
GTA dataset [30] contains synthetic scenes from the widely-
popular Grand Theft Auto V video game. This dataset is se-
mantically similar to Cityscapes but is larger with 26k train-
ing images and 5k testing images. The resolution is same as
the Cityscapes dataset.
NYU Depth V2 [34] contains video frames of 464 indoor
scenes from 3 cities recorded by the Microsoft Kinect RGB-
D cameras. Our task is to synthesize depth maps from
RGB images at 256x256 resolution. We create an 80%-20%
split of the 1,449 pre-processed pairs to synthesize colorized
depth map from RGB images.
ADE20K [49] consists of challenging indoor and outdoor
scenes labeled for 150 different semantic classes. The
dataset is split into 20,210 training images and 2,000 val-
idation images.
Evaluation protocol. We adopt evaluation protocols that
are tailored to traditional image translation tasks as well as
more domain-specific metrics such as those frequently em-
ployed in the pixel labeling and depth estimation literature.
To briefly summarize, we first use the standard Fréchet In-
ception Distance (FID) metric [16], which is aimed at as-
sessing the visual quality of generated samples compared to
real images by computing the statistics between the distri-
butions of real and generated images estimated by a deep
neural network. In the standard setting, this network is
an InceptionV3 pretrained on the ImageNet dataset. How-
ever, FID does not evaluate the correspondence between in-
puts and outputs. Therefore, for semantic image synthe-
sis tasks of the Cityscapes, GTA and ADE20K datasets,
we adopt prior protocol and evaluate segmentation accu-
racy [3, 43, 28]. We report the mean average precision
(mAP) and pixel accuracy (Acc). In order to evaluate the
performance of our approach on the NYU V2 depth estima-
tion task, we report the standard absolute relative difference
(rel) and RMSE-linear (rms) criteria [10, 20].
Qualitative evaluation As shown in Figure 3, the L1-
regression loss in the pixel or the VGG feature space re-
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Figure 4. We show the effect of using the PatchNCE loss in comparison to the L1 feature loss on the Cityscapes, GTA, ADE20K, and NYU
Depth V2 dataset, without and with the GAN discriminator. Even without GAN, our PatchNCE loss brings out sharpness and saturation,
almost matching the quality of SPADE [28], which uses GAN as well as the L1 feature matching loss. Adding GAN to PatchNCE further
enhances realism by removing small grid artifacts in the outdoor scene (ADE20K, third row) for example.

sults in desaturated, blurry images, since the information
loss in the output image is not penalized. In contrast, our
PatchNCE method does not suffer from this same phenom-
ena and produces output images with increased sharpness
and color saturation. We observe that the increased sharp-
ness and saturation makes the outputs similar to the results
of GAN-based methods like SPADE [28] (Figure 4). More-
over it is seen that our PatchNCE can also further benefit
from the addition of GAN.
Quantitative evaluation In Table 1, we show quantita-
tive measures comparing our method variants to alterna-
tive approaches for two street scene datasets, one natural
(Cityscapes) and one synthetic (GTA), a diverse indoor-
outdoor dataset (ADE20K), and RGB - colorized depth map
dataset (NYU Depth V2). Here, we compare our method

against baselines using L1 pixel regression, L1 loss on
VGG features as in [3], and also in combination with the
GAN loss used in [43, 28]. We present three variants of
our method: the generator trained with only the patch-based
contrastive loss applied directly to raw pixels (Pixel Patch-
NCE), contrastive loss applied to fixed VGG features (VGG
PatchNCE), and our formulation that incorporates a GAN
discriminator loss (VGG + GAN PatchNCE). In nearly all
cases across these datasets, simply replacing the L1 met-
ric with our contrastive loss formulation brings notable im-
provements to segmentation metrics (mAP, Acc) and depth
estimation metrics (rel, rms). Moreover, our method con-
sistently lowers FID scores for the variants that forgo the
GAN discriminator loss, suggesting that the PatchNCE loss
helps to bring significant improvements in photo-realism.



Feature
Space Loss Cityscapes [6] GTA [30] ADE20K [49] NYU Depth V2 [34]

FID # mAP " Acc " FID # mAP " Acc " FID # mAP " Acc " FID # rel # rms #

Pixel L1 135.1 45.3 76.3 132.1 20.2 33.7 126.5 7.4 43.4 264.6 0.431 1.83
PatchNCE 107.3 48.2 78.2 107.2 23.1 40.1 125.9 8.7 46.2 170.6 0.434 1.77

VGG L1 [3] 76.2 60.5 81.9 62.22 31.6 47.7 74.6 20.9 63.6 103.2 0.410 1.80
PatchNCE 68.3 64.6 82.4 47.3 33.6 50.7 48.9 29.0 69.5 97.2 0.413 1.87

VGG
+ GAN

L1 [28] 58.7 62.3 81.9 36.3 30.8 47.3 33.1 38.5 79.9 86.5 0.454 2.12
PatchNCE 66.7 66.1 82.4 39.4 34.8 51.9 34.9 29.1 70.8 64.0 0.444 2.11

Table 1. Using the PatchNCE loss instead of L1 improves quantitative metrics across different datasets and feature spaces. For each
dataset, we compare the results of training with our PatchNCE loss as opposed to the standard L1 regression loss. The experiments are
also performed in different feature spaces, including just the pixel space (Pixel), the feature space of a pretrained VGG19 network (VGG),
and VGG in combination with a GAN discriminator (VGG + GAN). In absence of GAN (the first four result rows), the advantage of our
method over L1 is clear across datasets and various metrics. When GAN is added, we observe that the gap is reduced, likely because the
GAN discriminator “fixes” the typical artifacts of the L1 regression. Still, our method attains superior correspondence metrics (mAP, Acc,
rel, rms) overall. Note that L1 loss in VGG + GAN corresponds to the original SPADE [28]. Also, the L1 regression loss in VGG space is
similar to CRN [3], except that the SPADE architecture was used for fair comparison.

For completeness, we note that published CUT [27] per-
formance on the Cityscapes semantic segmentation metrics
(mAP: 24.7, Acc: 68.6) is significantly lower than all other
methods in Table 1, underscoring the advantages of using
paired data when it is available.

One advantage afforded by our implementation of a con-
trastive loss over L1 loss is the ability to still take advan-
tage of strong feature extractors pretrained on large datasets
while adapting it to new data domains in an efficient way.
Specifically, our methods trains a lightweight projection
head as it learns to become a better critic (i.e., a better es-
timator of mutual information). Therefore, we hypothesize
that this difference should prove to be advantageous when
the target domain diverges from natural images. Indeed, the
qualitative and quantitative comparison shown on the GTA
and NYU Depth V2 dataset support this hypothesis with our
method showing performance improvements on synthesiz-
ing CG images or colorized depth maps.

4.2. Ablation analysis
Importance of Bidirectional PatchNCE and pretraining
In Table 2 we show the performance of our method un-
der several ablations with and without a GAN discriminator
loss. In particular, we compare standard vs bidirectional
PatchNCE loss variants and investigate the effect of un-
freezing the underlying feature network, or even training
it from scratch. Compared to the baseline method where L1
loss is applied to VGG features, all bidirectional variants
achieve higher mAP scores than the baseline (60.5), even
if the underlying feature extractor is trained from scratch
on the target domain. Keeping all other factors fixed, the
bidirectional NCE loss performs consistently better than the
standard NCE, but the bidirectional NCE loss becomes in-
creasingly important in stabilizing training when the under-
lying feature extractor is also being trained. The last row in
each section of in Table 2 most closely resembles a direct
application of CUT to paired data with/without a discrimi-

Method Performance

NCE variant GAN Pretrained F Frozen F FID # mAP "
Bidirectional* X X X 66.7 66.1

Standard X X X 69.3 64.9
Bidirectional X X 7 63.0 64.6

Standard X X 7 68.8 58.8
Bidirectional X 7 7 76.2 62.0

Standard X 7 7 87.1 57.7
Bidirectional* 7 X X 68.3 64.5
Bidirectional 7 X X 72.1 62.6

Standard 7 X X 73.8 61.6
Bidirectional 7 X 7 85.9 62.9
Bidirectional 7 7 7 86.0 62.7

Standard 7 X 7 135.7 42.5
Standard† 7 7 7 143.0 39.3

Table 2. FID and mAP scores on the Cityscapes dataset under dif-
ferent configurations of the VGG-PatchNCE method, including
whether the backbone VGG network is frozen and/or pretrained,
or if GAN loss is present. Bidirectional* forgoes NCE loss applied
to the first layer appearing in the original VGG loss implementa-
tion (layer 2) and serves as our default configuration. Standard†

is analogous to CUT [27] without a discriminator adapted for use
with paired data.

nator, and its trailing performance further highlights the ad-
vantages of our proposed bidirectional formulation.

5. Conclusion
We have introduced an approach for learning a

lightweight image similarity critic via our PatchNCE for-
mulation. We have demonstrated that the standard L1 loss
frequently applied in pixel or feature space can be replaced
by learning a new distance metric based on maximizing in-
formation between patches. Our loss formulation achieves
competitive or superior results on synthesizing both natu-
ral and non-natural images, and works well in raw pixel
space or the feature space of standard deep networks, with
or without a GAN discriminator. Our approach opens up
new avenues for exploring adaptive critics in other signal
modalities, such as video and audio.
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